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FORE WORD 
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Technical Officer for this office. 
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nical report .  
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the Astropower Laboratory. Dr.  R.  D. Joseph is the Principal Investigator. 

Contributors were G. E. Axtelle, D. B. Drane, C.  C. Kesler,  W .  B. Mart in , ,  

J .  N.  Medick, D. J .  Nikodym, A. G. Ostensoe and S .  S .  Viglione. 

I 
I 
I 

I 
SM-48464-TPR-5 .. 

11 



SUMMARY 

This report  covers Items 4, 7 ,  and 8 under contract NAS 12-30. These '  

i tems a r e  concerned with augmenting known properties with statistically de- 

rived properties,  and with studies directed toward improving the design of 

decision mechanisms and statistically derived property fi l ters.  

The augmentation of known properties with statistically derived prop- 

e r t ies  produced substantial performance gains in almost half of the cases  

studied. 

The smallest  gains were  achieved on tasks where performance with the known 

propert ies  alone was already ve ry  high. 

At least  small improvements were registered in  all but one case.  

Tes ts  on both new and modified decision algorithms revealed that, 

although computational aspects were improved, there were no significant 

gains in  performance. However, one technique (only partially tested) gives 

initial promise of r ea l  improvement in  performance. 

A method for designing property fi l ters which use  deterministic se- 

lection of subspaces a s  well a s  nonparametric distribution estimation to deter-  

mine the switching surfaces  was tested on two tasks. 

resu l t s  which sometimes exceeded and other t imes fell short  of previous 

performance. 

This approach yielded 

SM-48464-T PR-5  iii 
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1 . 0  INTRODUCTION 

The purpose of this program is to examine the feasibility of using pat- 

t e r n  recognition technique s for both extracting significant information f rom 

pictorial data, and for reducing the total amount of data that must be transmitted 

to convey this information. 

Research during this period was accomplished in three study a reas  

which were concerned with deriving more effective and more  complete adaptive 

design techniques. 

been heavily researched.  

problems e 

One a rea ,  the design of decision mechanisms, has already 

The other two a r e a s  represent  virtually untouched 

Section 2 of this report  describes the continuation of the studies on 

augmenting a set  of known property f i l ters  with statistically derived properties.  

The Statistical properties a r e  designed to complement the known properties,  

ra ther  than to provide an independent, parallel system. 

Section 3 descr ibes  efforts to improve the design of decision mechanisms, 

given a set of property f i l ters .  

but not improved decision mechanisms. 

These studies yielded improved algorithms, 

Section 4 repor t s  studies aimed at improving the statist ical  design of 

property f i l ters .  

of subspaces, and (2)  the nonparametric design of nonlinear switching surfaces 

within the subspaces. 

Tws approaches were tried: ( 1 )  the determ,inistic selection 

SM-48464-TPR-5 1 



2 . 0  AUGMENTATION OF KNOWN PROPERTIES 

2 .  1 Introduction 

Figure 1 shows a design philosophy for  recognition systems.  

"Signal Conditioning'' provides both formatting of the input patterns and (where 

possible) invariance to irrelevant pattern differences such as gray- scale 

changes, translations, etc. The "Known Propert ies"  a r e  included to exploit 

the designer 's  knowledge of the recognition task. 

acter is t ics  which the designer feels a r e  useful for  classifying the patterns.  

If the Known Propert ies  a r e  sufficient for the Decision Mechanism being used, 

then the design effort is readily completed. If they a r e  not, however, more  

property f i l t e rs  must be obtained. One way in which the additional property 

filters may be designed is by the statist ical  analysis of sample patterns (i. e .  

Statistical Property extraction). 

They measure  pattern char-  

The augmentation of a s e t  of Known Property filters with a se t  

of Statistical Property fi l ters specifically designed to complement the Known 

Proper t ies  is a virtually untouched problem. 

Number 4 ( l )  reported results achieved by such augmentation when applied to 

cloud recognition tasks ,  namely the separation of noncumulus f rom cumulus 

clouds (Task NVC), and within the cumulus c lass ,  the separation of polygonal 

cells f rom solid cel ls  (Task PVS). These results a r e  repeated here  fo r  com- 

pleteness (Table II). Six additional augmentations a r e  also reported. Experi- 

ments w e r e  performed for  three lunar te r ra in  recognition tasks ,  namely the 

separation of: 

ridges f r o m  r ima (Task RVR), and (3)  c ra t e r s  with flat f loors f rom c r a t e r s  

with cent ra l  peaks (Task CVC). 

elements w e r e  used. 

Technical P rogres s  Report 

(1) c r a t e r s  f rom wrinkle r idges/r ima (Task CVR), (2)  wrinkle 

Aperture s izes  of 25 by 25 and 15 by 15 

2 . 2  Methodology 

A set  of 2 9  Known Properties was designed by the NASA Tech- 

nical  Officer for  this program, M r .  Eugene M. Darling, Jr. These proper-  

t i es ,  l is ted in Table I ,  were" specifically designed for  recognition of cloud 

pat terns .  Systems using these Known Propert ies  achieved 90. 0 and 

9 7 . 0  percent  generalization performances on Tasks NVC and PVS, respec- 

tively. 

there  is little room left  f o r  improvement by augmentation. 

- - 

Since these Known Propert ies  alone achieved excellent performance, 

SM-48464- TPR-5 2 
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TABLE I 

! 

KNOWN PROPERTIES 

1. Mean Brightness 

2. Brightness Variance 

3. 

4. 

5. Relative 

6. Frequency 

7. of Each 

8. Gray Level 

9. 

10. 

1 1. Information in the X- 
Direction (adjacent points) 

12. Information in  the Y- 
Direction 

13. Mean Gray Level Area 
(connected regions of 
constant gray level) 

14. Variance, Gray Level Area 

15. 

16. 

17. 

18. 

19. 

20. 

2 1. 

22. 

23. 

24. 

25. 

26. 

27. 

2 8. 

29 

Mean Cloud Segment 

Numbe r of Clouds 

Mean Cloud Size 

Variance Cloud Size 

Re la tive 

F r e  qu enc y 

of Cloud 

Size 

(i. e. number 
of elements 
in a 75 x 75 
element 
aper ture)  

1- 5 

26-100 

101-225 

226-400 

401-900 

90 1 - 1600 

160 1-2500 

250 1-3600 

360 1-4900 

4901-5625 

.80 contour area (auto- 
correlat ion function) 

SM-48464-TPR-5 4 



I 

Fifteen of these 29 Known Properties relate to general charac- 

ter is t ics  of a two dimensional brightness field. 

specifically tailored to the cloud recognition problem. 

a r e  numbers 1 through 14, and 29. 
aforementioned lunar te r ra in  recognition experiments. 

that the use of a small  set  of Known Propert ies ,  none of which was designed 

f o r  the lunar problem, would result  in lower performance levels more  amen- 

able to improvement by augmentation than was the case  with the previously 

described cloud experiments. 

The remaining properties a r e  

The general  properties 

These 15 properties were  used in the 

It was anticipated 

I 
I 

I 
The method of augmentation was as  follows. 

mechanism fo r  the Known Propert ies  was f i r s t  designed. 

the Iterative Design algorithm (modified to process  the continuous outputs of 

the Known Property f i l ters)  was used. 

reasons: 

of the pattern losses  used in the r e s t  of the process;  and (3 )  compensation f o r  

variation of means and variances between property f i l ters  is automatic ." 

A l inear decision 

F o r  this purpose 

This approach was used for  three 

( 1 )  design t imes a r e  short; (2) the designs a r e  optimized in t e rms  

After this design was complete, each sample pattern in the 

If Di was the value of the l inear  deci- training se t  was assigned a loss  value. 

sion function for  the i - th  pattern, and 6.  plus o r  minus one, depending on the 

t rue  classification of that pattern, the loss for  that pattern was given by 
1 

Li = exp { -biDi3 

This portion of the system design was held fixed for the r e s t  of the process .  

The losses  for  the training samples were used as initial values 

f o r  the sample pattern losses  in the QSID program. This program selects 

statist ically designed property f i l ters  to minimize the system loss  (sum of 

the losses  of all training patterns).  

selected to  complement the Known Property f i l ters .  

Thus the Statistical Property f i l ters  a r e  

I 
In some other  experiments using continuous data an E r r o r  Correction 
process  was used. 
of the algorithm. If this normalization had not been made, four million 
cycles through the patterns would have been necessary for  the threshold 
to compensate for  the means of the property f i l t e r  values. 

The data had to  be normalized pr ior  to the application I 
I 1 
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After the set  of augmenting Statistical Property f i l ters  was 

selected, the decision mechanism generated by the QSID program was dis- 

carded. 

the Iterative Design algorithm, again using initial values for losses  of the 

training patterns. 

adding the decision functions for the Known and Statistical Property se t s .  

Again, the use of the Iterative Design algorithm made the equal weighting of 

these two decision functions automatic. 

That portion of the decision mechanism was redesigned by applying 

Performance on the sample patterns was determined by 

2 . 3  Results and Conclusions 

The process  for  augmenting Known Propert ies  was applied to 

eight recognition tasks.  Table I1 presents the resul ts  obtained both with the 

Known Propert ies  alone, and with Known Propert ies  augmented by Statistical 

Propert ies  

Although resul ts  for networks using Statis tical Propert ies  only 

(i. e . ,  no Known Propert ies)  were available for most of these recognition tasks ,  

these resul ts  were not included in Table 11. A comparison between the perform- 

ances of a Statistical Property system and an augmented Known Property system 

does not evaluate the augmentation process.  

rived the augmenting properties is the same one that derived the original s ta t is-  

t ical  properties.  

the pattern losses  to insure that the augmenting statist ical  properties would not 

t r y  to duplicate the efforts of the Known Propert ies .  Thus, i f  the performance 

of the augmented systems is higher (o r  equal to) that of the Statistical Property 

systems,  one concludes that the Known Propert ies  a r e  (o r  a r e  not) measuring 

significant pattern features not accessible to  the quadratic Statistical Property 

f i l ters .  Thus, this comparison evaluates the utility of the Known Propert ies  in 

the augmented system. 

the augmentation process ,  statistical property systems should not be compared 

to augmented systems.  

The computer program which de- 

The only difference consisted of providing initial values for 

As  the purpose of these experiments was to evaluate 

In assessing the performance differences which a r e  shown in Table 

11, two factors  should be given consideration: (1) an objective evaluation 

that such a difference might occur by chance, due to  the random selection of 

the sample tes t  patterns,  and (2) a subjective evaluation of whether or not the 

difference mat te rs .  To aid in this latter consideration, the column "Percentage 

SM-48464-TPR-5 6 
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Decrease in E r r o r  Rate" is given in  Table 11. 
of Chance Occurrence" provides an  indication of the probability that the dif- 

ference occurred by chance. 

below 

The column headed "Probability 

The method used in its computation is given 

It is desired to tes t  the hypothesis that the systems (Known Prop-  

er ty  system and augmented Known Property system) a r e  equal against the (one 

sided) alternative that the augmented system is better. Assume that the pat- 

t e rn  se t  (consisting of 400 patterns) used to tes t  one system was selected in- 

dependently of the pattern se t  used to test the other system, and that each 

system has the same e r r o r  ra te ,  r .  

the Known Property system and the augmented system, respectively. Then 

the variance of rK 

Let rK and rA be the observed e r r o r  r a t e s  for 

is r ( l  - r)/200. Under the hypothesis, .. rA 

 ZOO (rK - rA) 

will have zero  mean and unit variance; and will be very nearly normally dis- 

tributed. 

and a table of the cumulative normal distribution was consulted to determine 

the probability that a difference greater  than o r  equal to observed difference 

would occur  by chance. 

f o r  moderate probabilities, and indicative of very small  probabilities for  the 

extreme values. 

the "Probability of Chance Occurrence" is the probability that a difference 

grea te r  than the observed difference rA - rK would occur by chance. 

1 To obtain the "Significance Level," r was estimated by z(rK t rA),  

The normal approximation should be very accurate 

F o r  task PvS, the one case  in w-hich rK was l e s s  than rA, 

This analysis is  conservative. The tes t  patterns actually used 

were the same  for  each system. 

sma l l e r  performance difference than with two inde'pendent se t s  of tes t  patterns - 
To see  the extent of this, suppose that associated with the i- th tes t  pattern 

was a parameter ,  p.. Let pi be the probability that each system misclassifies 

the i - th  pattern (i. e .  , the systems make independent classifications, each 

having a probability of 1 - pi of being correct) .  

and 1, over  the possible set  of tes t  patterns. Then r tion with parameters  - 1 - r  
the expected e r r o r  rate is r ,  and the variance of rK - rA is r (1  - r) / (ZOO(Z  - r)). 

One would therefore actually expect a 

1 

Let p. have a Beta distribu- 
1 

2 
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F o r  t s k  NVC, this n lysis would give a "Probability" of . 022,  compared to 

the value of 

f o r  the Beta distribution is a rb i t ra ry ,  and crit ically affects the resul ts .  
1 - r  example, parameters  1 and - also give an expected e r r o r  rate of r ,  but r 

yield e 00003 a s  the Probability of Chance Occurrence.  

083 given by the conservative analysis. The choice of parameters  

F o r  

Summarizing the results of the augmentation studies, eight tes ts  

On task PvS a significant performance decrease was encountered, were made. 

and on task CVC at the 15 by 15 aperture an insignificant performance change 

occurred. These failures a r e  not disappointing, a s  performances with the 

Known Proper t ies  alone a r e  97 and 96 percent respectively. On task CVR a t  

both apertures ,  and on task CVC a t  the 25 by 25, very substantial reductions 

in the e r r o r  ra tes  accompanied the augmentation, and the likelihood that these 

improvements occurred by chance is quite remote. 

borderline case.  

a s  large a s  those achieved in the better cases ,  and there  is one chance in 

twelve that the improvement might occur by chance. 

tures  provided the most  disappoining results.  

ra tes  were  relatively small ,  and quite likely to have occurred by chance. 

Task NVC provides a 

The reduction in the e r r o r  rate is only one-third to one-half 

Task RvR a t  both aper -  

The reductions in the e r r o r  

In a t  l eas t  half of the tes t  cases  on which augmentation would be 

important to a designer,  substantial performance increases  were  achieved. 

Thus, the augmentation process  appears to be a valuable one, particularly 

when it is  most  appropriate -when the Known Propert ies  alone do not produce 

very high performance levels 

SM-48464- TPR-5 9 
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3 . 0  DECISION SYSTEMS 

3. 1 Introduction 

Ear l ie r  results obtained by using a variety of algorithms to design 

decision networks fo r  a given se t  of property detectors did not show a c lear  

superiority for  any technique. 

to be equally effective. 

In particular,  the recursive techniques appeared 

MADALINE was the only technique tested ea r l i e r  which yielded a 

nonlinear decision on the property profiles. 

g rea te r  capability than the other techniques, gained a t  the expense of greater  

system complexity. 

buted to the fact that the particular property f i l ters  used were designed to 

achieve l inear separability of the training patterns.  

sion techniques were included in  this study, and provide a partial  confirmation 

of this hypothesis. 

applied to the same sets  of property f i l ters .  

Consequently, it has an inherently 

Its failure to exploit this -added capacity might be at t r i -  

Two new nonlinear deci- 

They also failed to outperform the l inear techniques when 

The two new techniques a re  attractive in their  own right, and 

their  inclusion in this study appears worthwhile. The piecewise- l inear tech- 

nique has  been favorably reported in  the l i terature .  (2) The Distribution Esti- 
mation method provided good results as reported in Section 4 of this report .  

The e r r o r  Correction and MADALINE techniques required rela-  

tively long design t imes.  

oscillations in performance as a function of the number of training cycles. 

This behavior made it difficult to select  a proper  stopping point for  the design 

process .  

Correction algorithm, and two modified MADALINE algorithms were  tested. 

Furthermore,  these two designs exhibited strong 

In an attempt to overcome these difficulties one modified E r r o r  

3 .  2 Distribution Estimation 

A distribution estimation technique was applied to the QSID and 

This method is DAID property profiles derived ea r l i e r  for sample patterns.  

nonparametr ic ,  and is intended to recover f rom sample vectors an estimate 

of the (continuous) underlying distribution. 

tended for  continuous distributions, it is  perhaps not a t  i ts  best  when applied 

to the binary property f i l ter  outputs. 

Because this technique was in- 

The program was written for use in 

SM-48464- T P R -  5 10 



designing property f i l ters  (Section 4), and was limited to  the processing of 

35-dimensional distributions. 

o r  35 property f i l ters  generated by the QSID o r  DAID program. 

ments were performed on task CVC (15 x 15 aperture) where the total property 

filter set  consisted of only 65 units. 

estimation thus represented a la rger  fraction of the total than would have been 

the case for any other task. 

In this study i t  was applied to the f i r s t  5,  25, 

Most experi- 

The small set processed by distribution 

Let there be M (training) sample vectors ,  each being n- 

dimensional. 

j- th coordinate of a tes t  pattern be denoted by x.. 

the tes t  vector Y is given by: 

Denote the j- th coordinate of the i-th sample by yij. Let the 

The likelihood estimate for 
J 

n M 
f(X) = -& { ll 1 { C exp{ -k b.(x J j  - yij)') 3 

k= 1 i = l  j=1  

A more  complete description of this estimate, and the means for estimating 

the parameters  b ,  is given in Section 4.3.  
3 

A decision is derived for a tes t  pattern by estimating the likeli- 

hood functions (i. e. , density estimates for the tes t  pattern vector) for each 

c lass ,  using the sample patterns and b. values appropriate to that c lass ,  and 

then selecting the largest  likelihood value. The resulting decision surface is 

highly nonlinear. 

J 

The technique was applied to task  CVC (15 x 15 aperture) for 5, 

25, and 35 property f i l ters ,  to task RvR (15 x 15 aperture) for 25 property 

f i l t e rs ,  and to task NVC for  35 property f i l t e rs .  

3 . 3  Piecewise-Linear 

In the piecewise-linear algorithm used in this study, an even 

number of response units was selected. 

signed to each class .  

unit with the highest input sum. 

and the response unit input weight vector hopefully represents  a cluster point 

of the training patterns of the appropriate class.  

Half of the response units were  as- 

A decision is  achieved by determining the response 

The decision surface is piecewise-linear, 

SM-48464-TPR-5 
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The algorithm is a s  follows. If a co r rec t  decision on a training 

pattern is  obtained, no changes a r e  made in the response units' input weights. 

If an incorrect  decision is reached, the response unit f o r  the cor rec t  c lass  

with the largest  input sum is determined. 

6 i  weight f rom an  active property filter is  incremented by - m '  
total number of active property f i l ters .  On odd-numbered cycles (through the 

training patterns) only, the response unit which caused the incorrect  decision 

is also modified, the connections f rom active property f i l t e rs  being incremented 

F o r  this response unit, each input 

where m is the 

. 6. h e r e  is 1 f o r  a positive class  training pattern,  and -1 fo r  a nega- 6i  by - -  m 1 
tive c l a s s  training pattern. 

F o r  training purposes,  the weights were allowed to vary a s  

f reely a s  with the ea r l i e r  E r r o r  Correction and MADALINE systems,  but 

these weights are  not considered to be the actual system weights. The actual 

system weights a r e  taken to be the average values of these freely varying 

weights over  the las t  full cycle through the training patterns.  

which was also used on the modified E r r o r  Correction and one modified 

MADALINE," had the des i red  effect. 

with training cycles,  and the best  performance point came much ear l ie r  in  

the design run. The technique was applied to the DAID property f i l ters  fo r  

tasks  CVN, PVS and RVR (50 x 50 aperture),  with 4,  6 ,  and 8 response units. 

This change, 

Performance did not oscillate strongly 

Another modified MADALINE will be called Sequential MADALINE. 

This technique does not u s e  the averaging process .  

algorithm appeared to use a large initial segment of the design run in allo- 

cating portions of the recognition task  to the various ADALINES. 

t ia l  MADALINE, the algorithm is run with 1 ADALINE for  N cycles through 

the training patterns.  After each cycle, the performance level is compared 

with previous performance level,  and if it i s  better,  the machine state is 

recorded. 

formance level  is used a s  initial weights f o r  one ADALINE of a three ADALINE 

system. 

The original MADALINE 

In sequen- 

After N cycles,  the machine state corresponding to the best  per -  

After N cycles,  the best  three unit sys tem is used as a start ing state 

* 
These two algorithms are  called Averaging E r r o r  Correction and 
Averaging MADALINE, respectively 

SM-48464- TPR-5 12 
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fo r  a five unit system, and so on. 

be 10. The purpose of this change i s ,  of course ,  to address  the first ADALINE 

to the largest  pa r t  of the problem, and subsequent ADALINES to increasingly , 

finer par ts  of the discrimination. 

and PVS, with seven ADALINES a s  a limit. 

3 .4  Results and Conclusions 

In the experimental work, N was taken to 

This technique was applied to tasks CVN 

The distribution estimation program was limited to processing 

35 property f i l t e rs  o r  less. 

was run for  5, 25, and 35 property fi l ters.  The resulting generalization e r r o r  

ra tes  a r e  plotted in Figure 2,  together with resul ts  obtained with the Iterative 

Design technique f o r  various numbers of property f i l ters .  

estimation method appears  to be bet ter ,  but its performance with 35 property 

f i l ters  does not equal that of Iterative Design with the full se t  of 65 property 

filters. The program will be modified to process  a l l  65 property filters, to 

determine whether o r  not the indicated advantage can be maintained. 

F o r  task CVC (15 x 15 aperture) ,  the program 

The distribution 

Distribution estimation was also applied to tasks  NVC and RVR 
(15 x 15 aperture)  with 35 and 25 property f i l ters  respectively. 

achieved were  76.50 and 77. 00 percent respectively. 

Correction algorithm applied to the same tasks with the same  number of 

property f i l t e rs  yielded 73.75 and 79. 25 percent respectively. Best  perform- 

ances obtained on these tasks were  86.25 and 84.50 percent using 400 and 235 

property f i l t e r s  respectively . 
achieves performances which a r e  about average on these tasks.  

nique is much more  complex than the ear l ie r  ones,  this is not encouraging. 

Fu r the r  tes t s  will be performed. 

Performances 

The unmodified E r r o r  

Thus the distribution estimation technique 

As the tech- 

The resul ts  obtained with the Piecewise-Linear technique and 

the three  modified algorithms a r e  summarized in  Table IV. 

purposes ,  the resul ts  achieved ear l ie r  wi th  the unmodified three unit 

MADALINE a r e  included. 

task  RVR; i t  and Iterative Design were  b e s t  on task  PVS; it was second to 

Iterative Design by a quar te r  of a percent on task NVC. On task  NVC, a l l  of 

the sys t ems  exhibit a sma l l  but consistent improvement over  ea r l i e r  results.  

Elsewhere,  only the Sequential MADALINE registered any gains, and those 

were  smal l .  

F o r  comparison 

This MADALINE had been the best  technique on 
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TABLE 111 

GENERALIZATION PERFORMANCE WITH NEW ALGORITHW 

Task Task Task  RVR 
CVN PVS (50 x 50) 

87.75 83.75 74.00 

88.00 85.00 75.00 

88.00 85.00 73.75 

87.50 85.50 75.25 

86.00 83.50 - 
87.75 85.75 - 
87.00 85.25 - 
87.25 86.50 - 
87.75 84.00 73.75 

87.25 85.00 74.00 

87.50 85.75 73.50 

86.00 

Technique 

Averaging E r r o r  Correction 

Averaging MADALINE 

Se qu entia1 M ADALINE 

Piecewise-Linear 

C o mp a r i s on: 

Unmodified MADALINE 
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In summary; a number of new and modified algorithms for  the 

design of the decision functions were tested on the same property f i l ter  sets  

a s  were the ea r l i e r  algorithms. The primary objective of these experiments 

was to improve performance levels,  and in this they failed to yield the hoped 

fo r  gains. 

incompletely tested due to computer program limitations (which a r e  being 

remedied). 

performed. 

ance increases .  

Dist,ribution Estimation, a difficult technique to implement, was 

This technique showed promising signs in one of the three tes ts  

The remaining algorithms failed to yield any significant perform- 

The modified algorithms did display some operational improve - 
ments.  Design t imes were shortened. F o r  example, the Sequential MADALINE 

design runs used 7 hours of SDS 930 t ime, compared with the 12 to 16 hours 

used by the ea r l i e r  MADALINE, with no sacrifice in performance. 

aging MADALINE and E r r o r  Correction did not display the la rge  performance 

fluctuations during the design run which were characterist ic of the unmodified 

algorithms. 

fidence in selecting a stopping point f o r  the design process .  

The Aver- 

The smoother performance curve gives the designer grea te r  con- 
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4.0 PROPERTY FILTERS 

4. 1 Introduction 

The results presented i n  Section 3 indicate that the decision 

mechanism algorithms are probably as effective a s  the se t  of Statistical 

Property f i l t e rs  permits. 

Statistical Propert ies  thus seems desirable. 

An improved means fo r  designing the se t  of 

In the preceding work, the Statistical Property f i l ters  were  

designed using the DAID algorithm o r  its slight modification, the QSID algo- 

rithm. In these, the se t  of property fi l ters is selected sequentially. 

time the existing set  is to be augmented, a pool of candidate f i l ters  is gener- 

ated. 

F o r  each subspace, a switching surface is defined by the vectors X satisfying 

the quadratic equation 

Each 

This i s  accomplished by randomly selecting a number of subspaces. 

' -1 -1 -1 1 
0 = X (S1 - S i l ) X  - 2X (S1 M1 - Si1M2)  t M I S l  M1 - M2S2M2 + I n  

M1 and M2 a r e  the mean vectors, and SI and S 
the two pattern class.  

M2S S1, and S were the t rue parameters  of these dis- subspace, and if  M l s  
tributions, this equation would provide an optimum switching surface. When 

M p P  M2, S19 and S 
patterns (as i n  the DAID and QSID algorithms). 

widely used, even when it is known that the underlying distributions a r e  not 

Gaussian (for example, s e e  Reference 3) .  

and the assumption of Gaussian statistics can lead to property filters of low 

efficiency. 

a r e  included in  the property fi l ter  set. Selections a r e  made on pragmatic 

grounds, based on how well the candidates augment the existing system i n  

separating the sample patterns. 

the covariance matr ices  of 2 
If each pattern class had a Gaussian distribution in  the 

2 

a r e  unknown, they a re  customarily estimated f rom sample 2 
This quadratic analysis is 

The random selection of subspaces 

To mitigate this, many more property filters a r e  generated than 

A new technique for generating Statistical Property f i l t e rs  was 

tested. 

techniques - the random selection of subspacesS and the assumption of 

Gaussian statist ics.  

sequentially, using a mutual information value as a selection cr i te  rion. 

This method avoids the two least  desirable aspects of the ea r l i e r  

Selection of coordinates f o r  a subspace was accomplished 
Within 
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a subspace, a switching surface was defined using a nonparametric distribu- 

tion estimation technique. 

Tests were performed on the cloud pattern tasks.  The textural 

nature of these patterns permitted a number of subspaces to be formed by 

translations of a subspace generated by the mutual information process .  

of 9 and 25 subspacess translations of a single select subspace, were used. 

The decision mechanism used in these systems was quite crude - consisting 

of an unweighted majority vote of the property f i l ters .  

Sets 

4 . 2  Subspace Selection by Mutual Information 

A program was developed to sequentially select the coordinates 

Mutual information values were used to control the selection of a subspace. 

process .  

patterns in the training se t  were  required. 

patterns in the i-th cell  of the first partition and the j- th cel l  of the second 

partition, p (i) denote the fraction in the i- th cell  of the first partition, and 

p2(j$ denote the fraction of patterns in the j- th cell  of the second partition. 

Then the mutual information is given by: 

To establish the mutual information, two partitions of the sample 

Let p(i, j )  denote the fraction of 

- 
1 

One of these partitions was provided by the actual classification 

The other partition chosen was an  attempt to reflect of the sample patterns.  

the suitability of the subspace already selected, i f  augmented by a candidate 

coordinate 

tween "zero" and "one. l '  If p(i ,  j)  = pl( i )p2(j)  for all  i and j ,  that i s ,  the 

actual pattern classifications were statistically independent of the second 

partition, the value would be "zero. 

that i s ,  the second partition gives complete information about the actual pat- 

t e rn  classification, the value of the mutual information is given by 

-C pl ( i )  log2 pl( i ) .  Since two classes  containing equal numbers of sample 

pat terns  were  used, this value is r lone . l l  

In this application, the value of the mutual information was be- 

If p ( i / J )  were always  zero'^ o r  "'one, 

The selection of the second partition was difficult, and the final 

choice represented severa l  compromises with computational reasonableness 
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Ideally, a property f i l ter  would be designed using distribution estimation for  

each subspace formed by augmenting the subspace already chosen by a candi- 

date coordinate. The decisions of these property f i l ters  would then fo rm the 

secondpartitions. To avoid the excessive computer t ime required to accom- 

plish this, it was decided to design one property fi l ter  on the subspace already 

selected, and to refine the property f i l t e rss  partition using the discrete  gray 

sca les  of the candidate coordinates. As a second compromise with memory 

s ize ,  only the most significant two bits of the three bit gray scale were  used. 

Thus the second partition has eight cells,  formed f rom the one bit decision of 

the logic unit and the two bit gray scale of the candidate coordinate. 

final simplification, and perhaps the most weakening compromise of a l l ,  

quadratic property f i l ters  were used to minimize computer time. 

vation of the quadratic unit is described in  Section 4. 1. 

A s  a 

The der i -  

Coordinates for  the subspace a r e  selected f rom a 2 5  by 25 sub- 

aper ture  of the 75  by 75  NIMBUS patterns. 

would be sufficiently large to contain the significant pattern features.  

NIMBUS patterns were divided into nine subapertures.  

f o r m  of these cloud s t ructures ,  the patterns within the nine subapertures 

should be of the same nature. All nine subapertures were used, so that the 

se t s  of training patterns contained 9000 examples of each class .  

It was felt that the subaperture 

The 

Due to the textural  

Once a subspace was selected, it was expanded to a s e t  of 25 

subspaces by translation. 

ture .  

and minus 25 r a s t e r  elements were  used. 

each of the original nine subapertures i s  included in the resulting se t  of 25 

subspaces. A se t  of nine subspaces was also formed by using only the 0 and 

plus and minus 25 translations (corresponding to the original subapertures).  

Consider the subspace to be in  the central  subaper- 

Horizontal and vertical  translations of 0 ,  plus and minus 10, and plus 

The subspace positioned within 

Results on task NVC were sufficiently poor with the nine sub- 

space case ,  that the 25 subspace case was not tested. 

PVS, a random subspace was selected in  the 25 by 25 subaperture,  and a se t  

of 25 translations formed a s  above. 

distribution estimation to this random subspace was virtually identical to  the 

performance of the same technique on the mutual information subspace, the 

As a control for  task 

The performance achieved by applying 
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e r r o r  rates being 9. 75 and 9.25 percent, respectively. Thus these initial 

tes ts  have not demonstrated that these mutual information subspaces offer 

any advantage over randomly selected subspaces. 

4. 3 Distribution Estimation 

A nonparametric distribution estimation technique was used to 

establish the switching surfaces for  the subspaces. In particular,  the binary 

property fi l ter  is defined a s  on for  a test  pattern if the density estimate (like- 

lihood function) for the positive class  is l a rge r  than that for  the negative class  

at the tes t  pattern vector. The problem of accurately recovering the unknown 

underlying distribution (or density) associated with a collection of samples has 

received considerable attention. E. P a r ~ e n ‘ ~ )  has  t reated a general c l a s s  of 

consistent es t imators  for  the one-dimensional case.  

been extended to the multi-dimensional case by V. K .  M ~ r t h y ! ~ )  The mathe- 

- 

Most of his results have 

M 
matical results can be described very briefly. Let (xk}k=l be a s e t  of M 

identically distributed N-dimensional random vectors.  

bution function FM is defined by the expression 

The empirical  dis t r i -  

k number of observations x 

such that x .  k < x j = 1 , 2 ,  . FpyI(X1,~2,. * 0 YxN) = - 
. , N 

J - j’  

An est imator  f M  for the N-variate density f is given by 

The function H satisfies the conditions 

H ( x l , x 2 , .  .xN) d x l . .  . dxN = 1, 
-Q) -00 

H(x l ,x2 , .  . .%) = H(&x1,Ax2, .  . *  ,*xN) 2 0,  
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and bn > 0 for n = 1 , 2 ,  . . . , N. 

assumed that the density f of the underlying distribution F is everywhere 

continuous. 

F o r  the applications of interest  it is also 

It can easily be shown that Equation (2) is equivalent to 

V. K. Murthy, i n  extending E. Parzen’s resul ts  for the one-dimensional case,  

has  shown that i f  the b 

conditions 

a r e  functions of the sample size M and satisfy the n 

(a) lim bn = lim bn(M) = for  n = 1 , 2 , .  . .  ,N 
M-03 M-03 

- - 0 3  
M 

N 
n b  

n= 1 

(b) lim 
M- 03 

n 

then f 

(a) and (b) a r e  satisfied then a t  every point X 
is a consistent estimate of f at every point X. That is, i f  conditions M 

lim EEfM(x)] = f(x) 
M- = 

and 

lim var  {fM(x)] = o 
M- = 

The specific case  under investigation involves 

so  that Equation (3) becomes 
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The notation used in  Equation (4) is  slightly different f rom that used in 

Reference 5 and entails substituting &- f o r  b 

dition (b). 

samples,  M, the problem is to obtain f o r  a fixed M an  estimate of the values 

fo r  bn. It is possible to introduce a property of the unknown underlying dis-  

tribution (via the sample set [xkIM ) by investigating a n  expression of the 

form 

in Equations (2), (3)  and con- n n 
Since in every practical  case one deals with a finite number of 

k= 1 

M M  

where 

> O f o r n =  l , 2 , . . o , N  Pn 

lim pn = 
M- 

and 

- - i j 2  - (xn - xn) , a i and j refer  to the i- th and j-th sample vector.  ijn 

The problem of determining the b n 
mining p It can be shown that i n  order  fo r  b 

conditions (a) and (b), p 

obtaining this resul t  the inequality 

is thus traded for  the problem of de te r -  

to satisfy the consistency 
n' n 

= 0 (log M)). In Pn is of the o rde r  of log M (i. e. , n 

n n= 1 

is derived, where 

Choosing 
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yields 

. N  
N M 

b1/2 
n n= 1 

1 1 - z  C 6  n n= 1 M 

so that the consistency conditions a r e  satisfied with p a s  given above if n 

N 
c 6 < 2 .  

n= 1 n 

Fur thermore ,  it can easily be shown that i f  pn is  of the form 

where 8, > 0 and gn, d 

sistency conditions a r e  violated. 

e xp r e  s s ion 

a r e  constants such that p n n 
> 0 for  M Z  1, then the con- - 

Thus, in calculating the values of bn the 

1 

is used. 

pn(M) which yield an indication of the "spread" of the unknown distribution 

along each of the N axes. 

large second central  moments requires  smaller  values for  b 

smal le r  values of p 

moments. 

The behavior of p (and hence of b ) is influenced by the quantities n n 

Thus for a fixed sample s ize  M a distribution with 

(and hence 

than a distribution possessing small  second central  
n 

n 
This behavior is exhibited by pn as  given above. 

Distribution estimates were made separately for  each subspace. 

Thus, although the coordinate configurations of the subspaces in a system a r e  

simple translations of one another, each subspace has  i ts  own unique switching 

surface.  

Attempts were made to simplify the distribution estimates by 

finding the local maxima of the density functions. 

number of sample points used in  the distribution estimation could be reduced 

It was hoped that the 
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by replacing those clustered around a mode by the modal point itself. Even 

with variations in clustering program parameters ,  only two modes could be 

found f o r  the Polygonal Cell  distribution, which would be insufficient to pro- 

vide a real  simplification. 

It was hoped that 25 to 100 cluster  points would be found, with 

nearly all of the sample points belonging to some cluster.  Having found such 

a se t  of c luster  points, one may proceed to simplify the system in one of two 

ways. 

one may use  the cluster  points plus the sample points not belonging to a 

cluster  to estimate the distribution. 

estimate the distribution, and when one finds two cluster  points which repre-  

sent perhaps a dozen sample points, the second alternative offers a one per -  

cent reduction in system complexity. 

The use of the first alternative with two cluster  points implies that the d is t r i -  

butions a r e  simple and highly separable. 

should do nearly as well, since four points a r e  separable by a quadratic 

surface,  

case.  

One may use only the cluster  points to estimate the distributions, o r  

When 1000 samples a r e  being used to 

This hardly seems worth the effort. 

A single quadratic property f i l ter  

Ea r l i e r  experiments with DAID units indicate that this is not the 

4.4 Optical Processing 

Optical processing") offers some attractive features for  pattern 

Great speed is possible due to the highly parallel  nature of the 

Processing in the frequency plane offers freedom f rom transla-  

recognition. 

processing. 

tional variations,  

gests  that a frequency plane analysis might be fruitful. 

In addition, -the textural nature of the cloud patterns sug- 

Interesting potential uses for an optical system a r e  a s  indepen- 

dent attention centering mechanisms for a recognition system, and a s  a 

property extraction device. Such devices would be based on matched f i l ters  

placed in the frequency plane. The theory of such f i l ters  is well known. (6) 

The two-dimensional Fourier  transform of an input image is 

By placing a suitably designed present  in the frequency plane (Figure 3) .  

transparency o r  mask  in the frequency plane, it is possible to operate on the 

Four i e r  t ransform of the input image with the results of the operation dis- 

played i n  the output plane. The optimum optical matched f i l ter  is defined to 
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Figure 3 .  Optical Matched Fi l ter  
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be one whose modulation t ransfer  function is proportional to the complex con- 

jugate of the spectrum S(p,q)  of an image of a pattern of interest  divided by 

the background noise spectral  density function N(p, q) where 

s ( 4 ,  q )  recorded image of a pattern of interest  against a 
noiseles s background 

m 

-OD 

RQT , T ) E autocorrelation function characterizing the noise 
m 1 2  

N(p,q) // R ( T ~ , T ~ )  ei(pT1tqT2) d 5 d T 2  

the optimum fi l ter  mask  is represented by 

The spectra of available patterns may be sampled at N points. 

Using the technique described i n  Section 4. 3 ,  estimates of the density functions 

fM(X1, 
local maxima] of these distributions might be assumed to be "pure signals' ' 

associated with the given c lass  of patterns,  while neighboring points might be 

assumed to be the pure signal corrupted by additive noise. 

, % I  of each pattern c lass  may be obtained. The cluster  points (or  

Property f i l ters  for  a two class  problem might be designed by 

contrasting each cluster  point of the density function of one c l a s s  with each 

c lus te r  point of the density function of the other c lass .  

might be designed f rom the appropriate density function by contrasting each 

c lus te r  point with the autocorrelation function of the "local noise'! around that 

c luster  point. 

One-class f i l ters  

Matched filtering is a linear operation and, unless the patterns 

a r e  near ly  linearly separable in their  frequency plane representations, one 

would not expect a single matched fi l ter  to give high levels of performance. 

Indeed, only limited success  has been obtained by researchers ,  thus far, in 

using a n  optical matched f i l ter  a s  a recognition device. The use of a number 
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of matched f i l ters  (as property detectors) separating the clusters  of the com- 

peting distributions would seem to offer more chance of success .  

4 . 5  Results and Conclusions 

The subspace selection algorithm was applied to task PVS. The 

first  eight coordinates were selected with no difficulty. 

were selected were widely separated in the subaperture. 

and ten, the program tried to select  coordinates already chosen. 

happens, the algorithm chooses the second best  candidate, and so on. 

these alternate selections, coordinates nine and ten of the subspace followed 

the trend of widely separated points. F o r  the eleventh and subsequent selec- 

tions, the program tried to repeat the fourth coordinate, and on being denied 

this,  chose an adjacent point. 

in classifying the training patterns varied smoothly, reaching a maximum with 

ten coordinates. 

18,000 subaperture patterns (nine subapertures f rom each of 2,000 training 

patterns).  

The coordinates which 

F o r  coordinates nine 

When this 

With 

Performance of the quadratic property fi l ter  

At that point i t  made 71. 65 percent co r rec t  decisions on the 

The first ten coordinates selected were used a s  the subspace. 

Nine translations were taken and switching surfaces assigned using distribu- 

tion estimation. 

the system decision, 86.75 percent of the tes t  patterns were correctly identi- 

fied. 

accomplished with 400 DAID property f i l ters ,  and a t  least  one percent better 

than any other  system obtained with statistically derived properties 

Using a majority vote of the nine property f i l ters  to determine 

This is a quarter  of a percent better than the Sequential MADALINE 

The same subspace was then used in 25 translations.  The system 

The property yielded 90. 75 percent co r rec t  decisions, a substantial increase.  

f i l t e rs  themselves were  73. 59 percent cor rec t  in 10,000 generalization deci- 

sions (25 subapertures f r o m  each of 400 generalization patterns).  

randomly generated subspaces, the 25 property f i l ters  were  73.17 percent 

co r rec t ,  and the majority vote system achieved 90.25 percent. Either this 

was a fortunate choice of random subspace, o r  the subspace selection process  

did not add much to the system, 

Using the 

The subspace selection program was then run to  choose a ten 

coordinate subspace f o r  task NVC. Repetition of previous selections began 
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with the fifth coordinate and continued thereafter. The best quadratic property 

fi l ter  classification of the sample patterns occurred with five coordinates, and 

was 60.67 percent. The ten coordinate quadratic unit gave 59.71 percent.  

The subspace selected was a rather strange one. 

f r o m  the left half of the top row of the 25 by 25 r a s t e r .  

was about halfway down the l a s t  column. 

The first nine choices came 

The tenth coordinate 

Nine translations were taken, and a distribution estimation system 

tested. It achieved 66. 5 percent on the tes t  patterns - 84 percent of the non- 

cumulus pat terns ,  30 percent of the solid cel l  patterns,  and 68 percent of the 

polygonal ce l l  patterns were correctly identified. 

eveness might be the fact  that equal numbers of cumulus and noncumulus pat- 

t e rns  were used to estimate the distributions. There were ,  therefore,  twice 

as many noncumulus patterns as 'there were solid cel l  o r  polygonal cel l  pat- 

t e rns .  

cel l  patterns.  

Contributing to this un- 

Solid ce l l  patterns appear more  s imi la r  to noncumulus than to polygonal 

Due to the poor overall resul ts ,  the 25 translation experiment 

was not run. 

The subspace selection program was continued to 23 coordinates. 

two coordinates near  the center of the subaperture, the remaining coordinates 

formed a loose cluster  near  the lower right corner  of the aperture.  

classification with a quadratic property was 67.86 percent with 17 coordinates, 

a figure much more  in line with that achieved on task PVS. Future plans cal l  

f o r  testing a subspace consisting of selections 8 through 17 ,  and a random 

subspace. 

The unusual subspace m a y  have contributed to these results.  

Except for  

Best 

Summarizing these resul ts ,  a technique fo r  property f i l ter  gener- 

ation utilizing sequential subspace selection and nonparametric distribution 

estimation was tested. On task  PVS a substantial improvement over previous 

results with statist ical  systems resulted; on task NVC an even more  substan- 

tial performance decline was experienced. 

tion process  appears weak. On task PVS, the selected subspace proved to be 

only slightly better than a randomly selected subspace, and the odd subspace 

selected f o r  task NVC more  than likely was responsible for  the poor results 

on that task.  

In both cases ,  the subspace selec- 
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5 . 0  PROGRAM FOR THE NEXT PERIOD 

Pr imary  emphasis in the final reporting period will be on I tems 5 and 

6 of the contract. 

a r e a  boundaries and the investigation of hardware feasibility. 

investigation of distribution estimation to design decision mechanisms will be  

performed. 

These i tems  a r e  concerned with the definition of pattern 

Some additional 

A final report  will be drafted. 

The determination of pattern a rea  boundaries will be  investigated on 

the cloud pattern tasks using existing network designs. 

a portion of the aperture  contains one pattern type, while the remainder of 

the aperture  contains a second type of cloud pattern, will be  synthesized. 

proportion of each pattern type will be varied. 

tested on these mixed patterns.  

Tes t  patterns in which 

The 

System performance will be 

Prel iminary design of a recognition system will be performed to 

establish hardware feasibility. 

input system, as briefly outlined in TPR-3, 

mentation of 400 six input .hyperquadratic first layer property fi l ters fol- 

lowed by one o r  more  l inear threshold response units. 

tain a memory  for storing the resul ts  obtained from training on the general  

purpose computer (weights, thresholds,  and coordinate of the data points which 

input to f i r s t  layer property f i l ters) .  

a s  well as accessing a new subsection will be discussed. 

digital techniques will be employed where weight and power savings resul t .  

Es t imates  of the size,  weight, power and component cost of the resulting 

recognition device will be tabulated. 

The system design will contain an optical 

and a sequential digital imple- 

The system will con- 

Control for generating the property f i l ters  

Hybrid analog and 
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